
Citation: Kim, K.; Ryu, J.; Lee, H.;

Lee, Y.; Won, D. Distributed and

Federated Authentication Schemes

Based on Updatable Smart Contracts.

Electronics 2023, 12, 1217. https://

doi.org/10.3390/electronics12051217

Academic Editors: Huy Kang Kim

and Younho Lee

Received: 1 February 2023

Revised: 18 February 2023

Accepted: 21 February 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Distributed and Federated Authentication Schemes Based on
Updatable Smart Contracts
Keunok Kim 1 , Jihyeon Ryu 2 , Hakjun Lee 3 , Youngsook Lee 4 and Dongho Won 5,*

1 Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon-si 16419, Republic of Korea

2 School of Computer and Information Engineering, Kwangwoon University, Seoul-si 01897, Republic of Korea
3 Department of Computer Engineering, Kyungnam University, Changwon-si 51767, Republic of Korea
4 Department of Computer Information Security, Howon University, 64 Impi-myeon, Howondae 3-gil,

Gunsan-si 54058, Republic of Korea
5 Department of Computer Engineering, Sungkyunkwan University, Suwon-si 16419, Republic of Korea
* Correspondence: dhwon@security.re.kr

Abstract: Federated authentication, such as Google ID, enables users to conveniently access multiple
websites using a single login credential. Despite this convenience, securing federated authentication
services requires addressing a single point of failure, which can result from using a centralized
authentication server. In addition, because the same login credentials are used, anonymity and
protection against user impersonation attacks must be ensured. Recently, researchers introduced
distributed authentication schemes based on blockchains and smart contracts (SCs) for systems that
require high availability and reliability. Data on a blockchain are immutable, and deployed SCs
cannot be changed or tampered with. Nonetheless, updates may be necessary to fix programming
bugs or modify business logic. Recently, methods for updating SCs to address these issues have
been investigated. Therefore, this study proposes a distributed and federated authentication scheme
that uses SCs to overcome a single point of failure. Additionally, an updatable SC is designed to
fix programming bugs, add to the function of an SC, or modify business logic. ProVerif, which is
a widely known cryptographic protocol verification tool, confirms that the proposed scheme can
provide protection against various security threats, such as single point of failure, user impersonation
attacks, and user anonymity, which is vital in federated authentication services. In addition, the
proposed scheme exhibits a performance improvement of 71% compared with other related schemes.

Keywords: federated authentication; smart contracts; updatable smart contracts

1. Introduction

The rapid development of electronic transactions has significantly improved user
privacy and transaction safety. To secure electronic transactions, a user must remember a
long password or supply a digital certificate or a one-time password. Most internet sites
employ a user authentication scheme based on an isolated identity architecture (isolated
authentication scheme), in which a service provider (SP) (providing services) and an
identity provider (IdP) (managing login credentials) are combined into a single server [1].
For example, in an isolated authentication scheme based on a password, a user requests a
login from an SP by submitting the user’s identity (ID) and password (PW), which are pre-
registered with an SP serving as an IdP. Upon receiving the user ID and PW, the SP verifies
whether they are in the password table and responds to the user for the authentication
result, as shown in Figure 1. Isolated authentication is one of the simplest authentication
schemes and is widely used in numerous internet services.

Electronics 2023, 12, 1217. https://doi.org/10.3390/electronics12051217 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051217
https://doi.org/10.3390/electronics12051217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2403-3862
https://orcid.org/0000-0001-8124-3853
https://orcid.org/0000-0002-5777-4256
https://doi.org/10.3390/electronics12051217
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051217?type=check_update&version=1

Electronics 2023, 12, 1217 2 of 25

1. Request login

2. Response

0. Registration

User

Website

ID:

PW: ****
Service

Provider

(SP)

User

Website

ID:

PW: ****
Service

Provider

(SP)

Identity

Provider

(IdP)

1. Request login

0. Registration of the user and

issue of login credentials

2. Request

verification of login

credentials

4. Response

verification of login

credentials

5. Response

3. entering login credentials

Figure 1. Isolated authentication scheme.

However, this scheme is inconvenient because it requires users to recall and man-
age their login credentials (for example, user ID, PW, and certificate) for each website.
In addition, security threats may occur when managing login credentials for multiple
websites [2].

In contrast, a user authentication scheme based on a federated identity architecture
(federated authentication scheme), such as Google ID, can authenticate users on multiple
websites using a single login credential that is pre-registered at an IdP, such as Google.
In this scheme, an SP and IdP can be separated and login credentials can be stored at an
IdP rather than with an SP. Furthermore, an SP and an IdP can be classified under the same
group [1,3,4].

If a user requests a login from an SP, then the SP redirects the user to an IdP website
with which the user has registered. The user enters their login credentials on the IdP
website. Upon receipt of the user’s login credentials, the IdP verifies whether the login
credentials are in the login table and then responds to the SP with the authentication result,
as illustrated in Figure 2.

1. Request login

2. Response

0. Registration

User

Website

ID:

PW: ****
Service

Provider

(SP)

User

Website

ID:

PW: ****
Service

Provider

(SP)

Identity

Provider

(IdP)

1. Request login

0. Registration of the user and

issue of login credentials

2. Request

verification of login

credentials

4. Response

verification of login

credentials

5. Response

3. entering login credentials

Figure 2. Federated authentication scheme.

A federated authentication scheme improves user convenience because it does not
require managing login credentials for each website. However, to maintain the security of
a federated authentication scheme, the following security principles are required [5,6]:

1. Avoiding a single point-of-failure: even if the IdP server fails, the SP using the
corresponding IdP should be available.

2. Ensure anonymity: because the same login credentials are used on multiple websites,
anonymity must be guaranteed.

3. Protection against impersonation attacks: login credentials must be protected in
federated systems, similar to all other access-protected systems. This is particularly

Electronics 2023, 12, 1217 3 of 25

important in federated authentication because if the login credentials are exposed,
then user impersonation attacks can occur on multiple websites.

Research [7–12] has focused on the high availability and reliability of such systems.
In 2022, Xue et al. [13] proposed a distributed authentication scheme that could resist a
single point-of-failure using smart contracts (SCs) and investigated the roaming services. In
this study, to avoid a single point-of-failure in federated authentication, Xue et al.’s scheme
was applied to the federated authentication concept. The vulnerabilities of the scheme of
Xue et al. [13] were analyzed and an improved scheme addressing these vulnerabilities
was proposed. Moreover, the SCs proposed by Xue et al. [13] cannot maintain previously
registered data if they are updated for programming bug fixes or authentication functions
that update SCs. Therefore, an updatable SC was designed to address these issues and
maintain registered data after updating the SCs. Finally, security and performance analyses
were conducted on the proposed scheme, and its safety and performance were compared
with those of other state-of-the-art schemes.

1.1. Our Contribution

This study proposed a distributed and federated authentication scheme based on
updatable smart contracts by improving Xue et al.’s [13] scheme. The contributions of this
study are summarized as follows.

1. A scheme was proposed in which each node has a copy of the chain owing to the
property of the blockchain to resist a single point of failure.

2. The scheme of Xue et al. [13], which allows impersonation attacks and does not
guarantee anonymity, was improved. To counter impersonation attacks, verification
logic was added to determine whether the owner of the public key is legitimate during
the authentication process. In addition to ensuring user anonymity, the proposed
scheme does not directly transmit user ID during authentication.

3. An updatable SC was designed to support the programming of bug fixes or authen-
tication functions to update an SC and maintain registered data after updating the
smart contract.

1.2. Paper Structure

The remainder of this paper is organized as follows. Section 2 presents the related
studies. Section 3 provides a preliminary overview of the basic elements used in this study.
Section 4 provides a review of Xue et al.’s scheme and Section 5 presents an analysis of
the security vulnerabilities of Xue et al.’s scheme. Section 6 presents the system model,
assumptions, and security requirements, and Section 7 presents the proposed scheme.
Sections 8 and 9 present security and performance analyses, respectively. Section 10 pro-
vides a discussion and limitations , and Section 11 concludes the study.

2. Related Studies

Blockchain-based decentralized authentication schemes have been proposed to satisfy
the high availability and reliability requirements of various systems.

Blockchain is a crucial emerging technology in e-health systems for the management of
sensitive medical data. The application of blockchain technology provides stable real-time
services and enables the distributed storage of medical data. Xiang et al. [7] proposed
a decentralized authentication and access control protocol for blockchain-based e-health
systems; this protocol uses BAN logic to validate the reliability of the system security
protection. Cheng et al. [8] proposed a medical data sharing scheme based on blockchain
that realizes medical treatment data sharing and satisfies various security requirements
during the authentication phase. Cheng et al. [8] claimed that their scheme provides
mutual authentication, anonymity, untraceability, session key security, and perfect forward
secrecy. However, Xiang et al. [7] reported that their scheme does not provide mutual
authentication without RA. Zhang et al. [9] proposed security and privacy requirements
for healthcare blockchains.

Electronics 2023, 12, 1217 4 of 25

For mobile vehicular networks, researchers [10–12] have proposed several technologies
combined with blockchain technology to ensure secure and real-time communication.
Recently, Xue et al. [13] proposed a decentralized fraudproof roaming authentication
framework based on the blockchain using SCs. In contrast, the present study focused on
using SCs to overcome the single point-of-failure of a centralized system. Notably, various
security threats are encountered when applying Xue et al.’s [13] scheme to federated
authentication schemes. Although Xue et al.’s [13] scheme addresses the important single
point-of-failure in federated authentication, it presents vulnerabilities to anonymity and
user impersonation attacks.

Data on a blockchain are immutable, and deployed SCs cannot be changed or tam-
pered with. However, in practice, updates are performed to fix programming bugs, add to
the function of an SC, or modify the business logic. Recently, studies have been conducted
to identify methods for updating SCs to address the abovementioned functions [14–18].
Zheng et al. [14] introduced various smart contract development platforms in 2020. Rep-
resentatively, they mentioned Ethereum, Hyperledger fabric, Corda, Stellar, Rootstock,
and EOS and compared these platforms based on the execution environment, supported
language, data model, consensus algorithms, permissions, and applications of SCs. In 2022,
a contract upgrade was implemented using a proxy, delegator, and dispatcher patterns [15].
Additionally, design patterns for smart contracts in Ethereum have been studied [16].

In addition, the applications of SCs have been studied [17]. Shao et al. [17] developed
an LSC, which is an anomaly detection mechanism, using SCs. The LSC was developed
using Solidity to enable log anomaly detection for log systems running on Ethereum [17].
Górski et al. [18] introduced an SC design and implementation patterns using Java; imple-
mented patterns increased source code reusability and foster testing. This method could
reduce the time taken for SC validation [18]. EL PASSO [19] was proposed based on a zero-
knowledge algorithm for prohibiting both IdP and RP to determine a user trace. However,
this method relies on a single ID provider and can forge IDs if a malicious provider exists.

In this study, a distributed and federated authentication scheme was proposed by
improving the scheme of Xue et al. [13] by overcoming anonymity and user-impersonation
attacks. Additionally, an updatable SC was designed to support the programming of
bug fixes and the authentication function for updating an SC, and to maintain the user
revocation status after updating the SC.

3. Preliminaries

This section reviews the background information on updatable SCs and elliptic curve
digital signature algorithms.

3.1. Updatable Smart Contracts

Szabo first proposed SCs in 1994 before the introduction of blockchain [20]. However,
with the advent of the Ethereum blockchain, alongside the development and application of
SCs accelerated [21]. SCs based on blockchain are self-executed programs executed on a
decentralized blockchain network. They enable contractual terms of an agreement to be
enforced automatically without the intervention of a central authority [14].

The building and execution processes for general SCs are illustrated in Figure 3. The
user sends a bytecode that compiles SCs to the blockchain and saves the address of the SC.
A person wishing to create an SC can do so using the address of the SC.

Electronics 2023, 12, 1217 5 of 25

G
e

n
e

s
is

B
lo

c
k

Block Header

Transactions

.

.

Transaction

Data

Code

Function()

Contract

Block Header

Transactions

.

.

Transaction

Block Header

Transactions

.

.

Transaction

…

Smart

contract
Bytecode

Compile

Blockchain

Deploy the

smart contract
Address of the

smart contract

Address

Invoke the

smart contract

Result

User User

Figure 3. Building and executing processes of general smart contracts.

These processes are performed in an immutable, transparent, and completely secure
manner because an SC is deployed in the blockchain network. Therefore, deployed SCs
cannot be changed or tampered with.

However, updates may be performed by fixing programming bugs, adding the func-
tion of an SC, or changing business logic. If a new SC is created, deployed, and used over
the old one, the previously stored data may be unusable. In addition, distributing the
address of the new SC to the user is a convenient approach.

For example, if the saved data and business logic are configured as an SC, as shown in
Figure 4, the saved data cannot be maintained when the SC is updated.

Call Add(2)

User

SC

𝑥 = 2 → 𝑥 = 5

contract SC {

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

Figure 4. SC that configures data and business logic into the same SC.

To address this, as shown in Figure 5, if SC1 stores data and SC2 contains business
logic, and SC1 calls SC2, then the operation result of SC2 is not reflected in SC1.

Electronics 2023, 12, 1217 6 of 25

Call Add(2)

User

Call Add()

SC1

𝑥 = 2 → 𝑥 = 5

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

Call Add(2)

User

Delegate

call Add()

SC1

𝑥 = 2 → 𝑥 = 5

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

Call Add(2)

User

Delegate

call Add()

SC1

𝑥 = 2 → 𝑥 = 7

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.delegatecall(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

New SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 5;

}

}

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.delegatecall(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.call(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

𝑥 = 2

Figure 5. Concept for SC1 calling SC2.

The updatable smart contract comprises SCs such as SC1 and SC2, as shown in Figure 6,
wherein SC1 stores data and SC2 contains business logic. If SC1 calls SC2 (a delegate call),
the operational result of SC2 is reflected in SC1.

Call Add(2)

User

Call Add()

SC1

𝑥 = 2 → 𝑥 = 5

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

Call Add(2)

User

Delegate

call Add()

SC1

𝑥 = 2 → 𝑥 = 5

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

Call Add(2)

User

Delegate

call Add()

SC1

𝑥 = 2 → 𝑥 = 7

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.delegatecall(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

New SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 5;

}

}

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.delegatecall(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.call(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

𝑥 = 2

Figure 6. Concept for SC1 delegate calling SC2.

When an SC update is required for a program change, we change the program and
deploy a new SC2. After that, in SC1, we can call a function to set the new address of SC2.
Finally, the saved data are maintained even if the new SC2 is updated. The details are
shown in Figure 7.

Electronics 2023, 12, 1217 7 of 25

Call Add(2)

User

Call Add()

SC1

𝑥 = 2 → 𝑥 = 5

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

Call Add(2)

User

Delegate

call Add()

SC1

𝑥 = 2 → 𝑥 = 5

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

Call Add(2)

User

Delegate

call Add()

SC1

𝑥 = 2 → 𝑥 = 7

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.delegatecall(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 3;

}

}

New SC2

contract SC2{

uint256 public 𝑥 = 0;

function Add()

{

𝑥 = 𝑥 + 5;

}

}

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.delegatecall(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

contract SC1{

uint256 public 𝑥 = 0;

function CallTest(address_contract){

_contractAddr.call(..(“Add(2)”)); }

function Setaddr(address_contract)

{ .. }

}

𝑥 = 2

Figure 7. Concept of updatable SCs.

3.2. Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is a standardized digital signature algorithm [22,23] that uses elliptic curve
cryptography (ECC). This algorithm comprises three processes [24,25]:

• Key Generation: ECC comprises two types of keys: public and private. Let E be an
elliptic curve over a finite field, Fq, of characteristic p and base point G ∈ E(Fq).

1. Select a random integer d in the interval [1, n− 1], where n is a sufficiently large prime.
2. Compute Q = dG.

Therefore, d is the private key and Q is the public key.
• Signature Generation: the signer performs the following steps to generate a digital

signature.

1. Select a random number k in the interval [1, n− 1].
2. Compute (x, y) = kG and r = x mod n. If r = 0, return to step 1.
3. Compute e = h(M) and s = k−1(e + rd) mod n, where M represents the data to

be signed. If s = 0, return to step 1.

Thus, pair (r, s) is a signature for message M.
• Signature Verification: the verifier performs the following steps to verify the digital

signature.

1. Verify that r and s are integers in the interval [1, n− 1]. Otherwise, the signature
is considered invalid.

2. Compute e = h(M), u1 = es−1 mod n, and u2 = rs−1 mod n.
3. Compute (x′, y′) = u1G + u2Q and v = x′ mod n.
4. Verify that v = r.

Thus, if v = r, then the signature is valid; otherwise, it is invalid.

4. Review of Xue et al.’s Scheme

This section describes Xue et al.’s distributed authentication scheme [13]. In this study,
blockchain-based SCs were used for distributed authentication. The system comprises
multiple domains, each of which contain access points (APs) and a network control center
(NCC). For example, a home network registering a user comprises home APs and a home
NCC (HNCC), whereas a foreign network visited by a user comprises foreign APs (FAPs)
and a foreign NCC. Each AP and NCC is connected to a blockchain. An NCC creates and

Electronics 2023, 12, 1217 8 of 25

maintains SCs for authentication and deploys them to a blockchain. Additionally, it issues
and manages login credentials for users/APs. In addition, APs authenticate users through
an SC issued by the NCC. Before authentication, the user must register with the HNCC
and issue login credentials. If the user wishes to access a foreign network, the user requests
authentication from the FAP. Upon receiving the user authentication request, the FAP
authenticates the user through the SCs and provides network access services. The system
model of Xue et al.’s scheme is shown in Figure 8.

Foreign Network Home Network

Foreign AP Home AP

Foreign NCC Home NCC

Mobile

User

Mobile

User

Mobile

Vehicle

Mobile

Vehicle

Blockchain

Roaming

Foreign Network’s

smart contract

Home Network’s

smart contract

Figure 8. System model of Xue et al.’s scheme.

Xue et al.’s scheme comprises three types of smart contracts: the main contract (MC),
the authentication contract (AC), and the revocation contract (RC), as shown in Figure 9.
The MC has the address of its own AC and a table that maps the other NCCs to their MC
addresses. The AC has an actual authentication function and the address of its own RC,
where the RC manages the user’s revocation status.

𝐼𝐷𝐻𝑁𝐶𝐶
𝐴𝐶 𝑎𝑑𝑑𝑟

𝐼𝐷𝐷𝑁𝐶𝐶1 → 𝑀𝐶1𝑎𝑑𝑑𝑟
𝐼𝐷𝐷𝑁𝐶𝐶2 → 𝑀𝐶2𝑎𝑑𝑑𝑟

…
Mapping table

Authentication

contract(AC)

Authentication

Function

RC addr

Revocation

contract(RC)

Main contract

(MC)

Figure 9. Xue et al.’s SCs.

This scheme comprises four phases: user and AP registration, user authentication,
dynamic user enrollment and revocation, and the establishment of a roaming partner-

Electronics 2023, 12, 1217 9 of 25

ship. The billing phase in this study was excluded because it is not directly related to
user authentication.

4.1. Registration Phase

In the registration step, the user and APs register with an NCC. Before a user accesses
a foreign network, a user must register with an HNCC. Before the registration phase,
the NCC generates its own ECDSA key pair, i.e., SKNCC and PKNCC, and deploys smart
contracts. The details of the user registration phase are as follows:

1. The user sends their identity, IDU , to the HNCC through a secure channel.
2. Upon receipt of the user’s identity, IDU , the HNCC generates an ECDSA private key,

SKU , an ECDSA public key, PKU , and a login credential, CRU = EC.Sign(SKNCC,
IDU ||PKU), for the user. Subsequently, the HNCC sends IDU , IDNCC, SKU , PKU ,
CRU , and MADDR to the user through a secure channel. IDNCC is the HNCC identity
and MADDR is the MC address of the HNCC.

The APs must be registered with their HNCC similarly to the user registration. The de-
tails of the user and AP registration phases are presented in Figure 10.

𝐼𝐷𝐻𝑁𝐶𝐶
𝐴𝐶 𝑎𝑑𝑑𝑟

𝐼𝐷𝐷𝑁𝐶𝐶1 → 𝑀𝐶1𝑎𝑑𝑑𝑟
𝐼𝐷𝐷𝑁𝐶𝐶2 → 𝑀𝐶2𝑎𝑑𝑑𝑟

Response for the registration

Request for the registration

Address of smart contracts

NCC BlockchainUser

Deploy the smart contracts

Generate the key pair and credential

NCC’s contract

key pair: (𝑆𝐾𝑈 , 𝑃𝐾𝑈)

𝐶𝑅𝑈 = 𝐸𝐶. 𝑆𝑖𝑔𝑛(𝑆𝐾𝑁𝐶𝐶 , 𝐼𝐷𝑈 || 𝑃𝐾𝑈)

𝐼𝐷𝑈, 𝐼𝐷𝑁𝐶𝐶 , 𝑆𝐾𝑈 , 𝑃𝐾𝑈 , 𝐶𝑅𝑈,𝑀𝐴𝐷𝐷𝑅

AP

𝐼𝐷𝐴𝑃, 𝐼𝐷𝑁𝐶𝐶 , 𝑆𝐾𝐴𝑃 , 𝑃𝐾𝐴𝑃 , 𝐶𝑅𝐴𝑃 , 𝑀𝐴𝐷𝐷𝑅

𝐼𝐷𝑈

Request for the registration 𝐼𝐷𝐴𝑃

Response for the registration key pair: (𝑆𝐾𝐴𝑃 , 𝑃𝐾𝐴𝑃)

𝐶𝑅𝐴𝑃 = 𝐸𝐶. 𝑆𝑖𝑔𝑛(𝑆𝐾𝑁𝐶𝐶 , 𝐼𝐷𝐴𝑃 || 𝑃𝐾𝐴𝑃)

Generate the key pair and credential

Main contract

(MC)
…

Mapping table

Authentication

contract(AC)

Authentication

Function

RC addr

Revocation

contract(RC)

Figure 10. Registration phase of Xue et al.’s scheme.

4.2. User Authentication Phase

In this authentication step, a user requests access to a foreign network by submitting a
request message, MU , to a FAP. Upon receipt of the user’s request message, MU , the FAP
verifies the user’s request message. If the request message is valid, then the FAP sends
the response message, MAP, to the user. The details of the user authentication phase are
as follows:

1. The user selects a random number rU and generates timestamps tsU , RU = rU · G,
TU = h(RU ||tsU), and VU = EC.sign(SKU , TU). Finally, the user generates a request
message as MU = IDU || PKU || CRU || RU || IDNCC|| VU || tsU and sends MU to the FAP.

2. Upon receiving the user’s request message, MU , the FAP verifies whether tsU is within
an allowable range. If tsU is valid, then the AP calculates T′U = h(RU ||tsU) and verifies
whether TU is equal to T′U . If tsU or TU is invalid, the FAP stops the authentication
phase. If the FAP does not generate the main contract’s input as TXin = IDNCC|| T′U ||
IDU || PKU ||CRU || VU , it invokes the MC and sends TXin for user authentication.

Electronics 2023, 12, 1217 10 of 25

3. If IDNCC points to its own identity, the MC calls its AC to verify whether CRU
and VU are valid. The AC verifies CRU as EC.Veri f y(PKNCC, CRU) and VU as
EC.Veri f y(PKU , VU), and performs verification through the RC to confirm whether
the user is revoked. If CRU , VU , or the response of the RC is invalid, the AC stops
this authentication phase and sends a failure response. Otherwise, the AC sends a
true response to the FAP. If IDNCC points to another NCC, then the MC searches for
IDNCC in the address mapping table. If IDNCC exists in the mapping table, then the
MC calls the corresponding MC to verify TXin and respond to the resulting receipt by
the corresponding MC to the FAP.

4. Upon receiving the true response of the MC, the FAP selects a random number rAP and
generates tsAP, RAP = rAP · G, TAP = h(RAP||tsAP), and VAP = EC.sign(SKAP, TAP),
where SKAP is the ECDSA private key of the AP. Finally, the FAP generates a response
message as MAP = IDAP|| PKAP|| CRAP|| RAP|| IDNCC|| VAP|| tsAP and sends it to
the user. Subsequently, the FAP computes the session key SK = rAP· RU .

5. Upon receiving the FAP response message, MAP, the user process is identical to that
of the FAP. Details regarding the user authentication phase are presented in Figure 11.

User Foreign AP Blockchain

Request for access

Verify 𝑡𝑠𝑈 and 𝑇𝑈
Generate the MC’s input(𝑇𝑋𝑖𝑛)

Call the smart contracts

Response the result of the authentication
Response for access

MU = IDU∥PKU∥CRU∥RU∥IDNCC∥VU∥tsU
ᆞRU = rU·G (rU is random number)

ᆞ𝑡𝑠𝑈is timestamp

ᆞ𝑇𝑈 = ℎ(𝑅𝑈 ∥ tsU)
ᆞ𝑉𝑈 = 𝐸𝐶. 𝑆𝑖𝑔𝑛(𝑆𝐾𝑈, 𝑇𝑈)

TXin = IDNCC∥TU
’ ∥IDU∥PKU∥CRU∥VU

Verify 𝑡𝑠𝐴𝑃 and 𝑇𝐴𝑃
Generate the MC’s input(𝑇𝑋𝑖𝑛)

TXin = IDNCC∥𝑇𝐴𝑃∥IDAP∥PKAP∥CRAP∥VAP

SK = rAP · RU

Generate the session key

1. Check Credential 𝑪𝑹𝑼(or 𝑪𝑹𝑨𝑷)
EC.Verify(𝑃𝐾𝑁𝐶𝐶, 𝐶𝑅𝑈(or 𝐶𝑅𝐴𝑃))

2. Check signature 𝑽𝑼(or 𝑽𝑨𝑷)
EC.Verify(𝑃𝐾𝑈(or 𝑃𝐾𝐴𝑃), 𝑉𝑈(or 𝑉𝐴𝑃))

MAP = IDAP∥PKAP∥CRAP∥RAP∥IDNCC∥VAP∥tsAP
ᆞRAP = rAP·G (rAP is random number)

ᆞ𝑡𝑠𝐴𝑃 is timestamp

ᆞ𝑇𝐴𝑃 = ℎ(𝑅𝐴𝑃 ∥ ts𝐴𝑃)
ᆞ𝑉𝐴𝑃 = 𝐸𝐶. 𝑆𝑖𝑔𝑛(𝑆𝐾𝐴𝑃 , 𝑇𝐴𝑃)

TXin

Call the smart contracts TXin

Response the result of the authentication

Generate the session key

SK = rU · RAP

Authentication Contract(MC)

𝐼𝐷𝐻𝑁𝐶𝐶
𝐴𝐶 𝑎𝑑𝑑𝑟

𝐼𝐷𝐷𝑁𝐶𝐶1 → 𝑀𝐶1𝑎𝑑𝑑𝑟
𝐼𝐷𝐷𝑁𝐶𝐶2 → 𝑀𝐶2𝑎𝑑𝑑𝑟

Foreign NCC’s contract

…
Mapping table

Authentication

contract(AC)

Authentication

Function

RC addr

Revocation

contract(RC)

𝐼𝐷𝐻𝑁𝐶𝐶
𝐴𝐶 𝑎𝑑𝑑𝑟

𝐼𝐷𝐷𝑁𝐶𝐶1 → 𝑀𝐶1𝑎𝑑𝑑𝑟
𝐼𝐷𝐷𝑁𝐶𝐶2 → 𝑀𝐶2𝑎𝑑𝑑𝑟

Main contract

(MC)
…

Mapping table

Authentication

contract(AC)

Authentication

Function

RC addr

Revocation

contract(RC)

Main contract

(MC)

Home NCC’s contract

Figure 11. Authentication phase of Xue et al.’s scheme.

4.3. Dynamic User Enrollment and Revocation

In Xue et al.’s scheme, if a user wishes to enroll in the system, then the user must
register with the HNCC. The user can revocate joining this system because of issues such
as key loss and illegal usage. If the user requests the HNCC to revocate, then the HNCC
updates the user’s identity, IDU , in the RC variable.

4.4. Establishment of Roaming Partnership

Different network operators can enroll in or cancel roaming partnerships. If an NCC
wishes to enroll or cancel different network operators, it must update or erase the corre-
sponding address mapping table in its MC.

5. Analysis of Xue et al.’s Scheme

This section analyzes the security vulnerabilities of Xue et al.’s scheme, which al-
lows impersonation attacks (i.e., attacks that do not guarantee anonymity). In addition,
the disadvantages of smart contracts are also discussed.

Electronics 2023, 12, 1217 11 of 25

5.1. User Impersonation Attacks

Assume that the attacker can register with the same HNCC as the user and steal the
user’s request message, MU , during the user authentication phase. The attacker possesses
their own data, IDA, CUA, PKA, SKA, and stolen user data, MU = IDU || PKU || CRU || RU ||
IDNCC|| VU || tsU . Details regarding user impersonation attacks are described as follows:

1. An attacker generates a request message as MA = IDU || PKA|| CRA|| RA|| IDNCC||
VA|| tsA and sends it to the FAP pretending to be the user.

2. Upon receiving the attacker’s request message, MA, the FAP verifies tsA and TA and
generates the main contract input TXin. Subsequently, the FAP sends TXin to the MC,
which calls an AC for user authentication.

3. The AC verifies CRA as EC.Veri f y(PKNCC, CRA) and VA as EC.Veri f y(PKA, VA).
The verification results for CRA and VA are valid because the AC does not verify
whether PKA corresponds to the user.

Consequently, an attacker can impersonate the user. In addition, the attacker who
receives the response result can obtain the session key between the FAPs by pretending to
be the user.

5.2. Anonymity

Xue et al.’s scheme does not guarantee user anonymity because every transaction
includes the user’s identity, IDU .

5.3. Disadvantages of Smart Contracts

Xue et al.’s [13] scheme does not define how to maintain registered data when updating
the AC for error correction or the authentication function. Consequently, if the AC is
updated in the scheme proposed by Xue et al., all users must be re-registered.

6. System Model and Security Requirements

This section introduces the system model and security requirements. In particular,
a system model for federated authentication schemes is introduced, along with the security
requirements that the scheme satisfies.

6.1. System Model

The system model of the federated authentication scheme comprises IdPs, SPs, and
users. The system model of the proposed scheme is shown in Figure 12.

1. SCs are of two types, namely, the MC and the AC. The MC and AC correspond to
proxy contracts and logic contracts, respectively, in [26]. The MC possesses registered
data, i.e., identity, certificate, and revocation status; however, it does not possess
authentication logic, whereas an AC possesses only authentication functions. IdPs
create, manage, and deploy SCs. Additionally, an SP can serve as an IdP by creating,
managing, and deploying SCs. Each user, SP, and IdP interfaces with the MC, and the
MC authenticates through the AC. To support AC updating, the IdP must implement
the SC such that the MC calls the AC using a delegate call. The design of the SCs in
the proposed scheme is illustrated in Figure 13.

2. Each user and SP can register with an IdP. If the user or SP requests registration,
the IdP registers and stores the registration data in their MC. Subsequently, the IdP
issues the login credentials and the address of the MC to the requester.

3. Users can log into the SP website using their login credentials. If the user requests
a login, the SP requests authentication from the IdP’s MC. The MC authenticates
the user through its own AC and then responds to the SP with the result; the SP
responds to the user. Subsequently, the user requests authentication from the IdP’s
MC for mutual authentication. After authentication is completed through the AC in
the aforementioned manner, the user and SP share a session key and communicate
securely using the session key.

Electronics 2023, 12, 1217 12 of 25

4. Each user and the SP can revocate their registration with the IdP. If the user or SP
requests revocation, the IdP requests revocation to its own MC. Subsequently, the MC
revocates the registration after completing authentication through its own AC.

IdP

User

IdP’s

MC

SP

2-1. Request registration

4-1. Request revocation

1-2. SCs deploy

2-2. Registration for user

4-2. Request revocation

3-1. Request login

IdP’s

AC

1-1. SCs create, manage

3-2. Request

authentication for log in

2-3. Store registration data

4-4. Revocation
3-3. Request authentication for log in

4-3. Request authentication for revocation

3-4. Authenticate for login

4-4. Authenticate for revocation

Figure 12. System model of the proposed scheme.

𝐼𝐷𝑈/𝑆𝑃

𝑅𝑒𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠

AC

𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

MC
𝑇𝐼𝐷𝑈/𝑆𝑃
𝐶𝑒𝑟𝑡𝑈/𝑆𝑃

𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒𝑐𝑎𝑙𝑙 𝐴𝐶
𝑤𝑖𝑡ℎ 𝐴𝐷𝐷𝐴𝐶

Figure 13. Design of SCs for the proposed scheme.

6.2. Security Requirements

The proposed scheme should satisfy the following security requirements [5,6]:

1. Single point-of-failure: if the IdP system fails, then user authentication should be
provided continually.

2. User anonymity: user anonymity must be guaranteed in the authentication phase via
a public channel.

3. User impersonation attack: even if an attacker eavesdrops on messages between the
user and the SP transmitted via a public channel, the user impersonation attack must
be protected.

6.3. Assumption

This paper assumes that the private key is stored securely in a tamper-proof smart card
and protected by the user’s password. In the event that the password is entered incorrectly
more than a set number of times, for example, five times, access to the private key will

Electronics 2023, 12, 1217 13 of 25

be blocked. To regain access to the service, the user must complete the re-registration
process, thereby ensuring that only authorized users can access the private key. This
security measure effectively mitigates the risk of unauthorized access and provides a robust
solution for secure private key storage.

7. Proposed Scheme

This section proposes a distributed and federated authentication scheme based on
updatable SCs that comprise six phases: initialization, user and SP registration, mutual
authentication, user revocation, service provider enrollment revocation, and SC updating.
The notation used in the proposed scheme are listed in Table 1.

Table 1. Notation

Notations and Abbreviations Description

IDU , IDSP, IDIdP Identity of the user, SP, and IdP, respectively
TIDU , TIDSP Temporary identity of the user and SP, respectively
PWU , PWSP Password of the user and the SP, respectively

SKU , SKSP, SKIdP ECDSA private key of the user, SP, and IdP, respectively
ESKU , ESKSP Encrypted private key using a password of the user and the SP, respectively

PKU , PKSP, PKIdP ECDSA public key of the user, SP, and IdP, respectively
CertU , CertSP Certification of the user and SP, respectively

ADDIdP Address for an IdP’s MC
ADDAC Address for an AC

Sig(.) ECDSA signature generation function
Veri f y(.) ECDSA signature verification function

h(.) Hash function
‖ Concatenation operator
⊕ Bit wise XOR

SK Session key
SP Service provider
IdP Identity provider

MC, AC, SC Main contract, authentication contract, and smart contract, respectively

7.1. Initialization

During system initialization, each IdP creates and deploys SCs in the blockchain and
stores the addresses of the SCs. The detailed content of the SCs is shown in Figure 13. The
IdP chooses an elliptic curve, E, defined over a finite field, Fq, of characteristic p and base
point G ∈ E(Fq), and securely generates the ECDSA’s key pair, SKIdP and PKIdP, and the
IdP’s identity IDIdP.

7.2. Registration Phase

In the registration phase, the user and SP register with the IdP. First, the user registra-
tion process is as follows:

1. The user generates a PWU and an IDU .
2. The user sends the IDU to the IdP through a secure channel for registration.
3. Upon receiving the IDU , the IdP generates the ECDSA key pair, SKU and PKU , and

computes certificate CertU = PKU ||IDU ||IDIdP||Sig(SKIdP, PKU ||IDU ||IDIdP).
4. The IdP stores IDU and CertU in its own MC, as presented in Table 2.
5. The IdP sends SKU ||ADDIdP via a secure channel to the user.
6. Upon receiving SKU ||ADDIdP, the user stores IDU , ESKU = SKU ⊕ h(PWU), and

ADDIdP, as listed in Table 3.

Electronics 2023, 12, 1217 14 of 25

Table 2. Data stored in the IdP’s MC.

Data Description

IDU/SP Identity of user or SP

TIDU/SP Temporary identity of user or SP
Initial value = IDU/SP

CertU/SP User or SP certificate.

Revocation status Revocation status of user or SP
Initial value = false

Table 3. Data stored in the user or SP.

Data Description

TIDU/SP Temporary identity of user or SP
Initial value = IDU/SP

ESKU/SP Encrypted private key of user or SP

ADDIdP Address of the IdP

Second, the registration phase of the SP is identical to that of the users. The SP
registration process is as follows:

1. The SP generates PWSP and IDSP.
2. The SP sends IDSP to the IdP through a secure channel for registration.
3. Upon receiving IDSP, the IdP generates the ECDSA key pair, SKSP and PKSP, and com-

putes the certificate CertSP = PKSP||IDSP||IDIdP||Sig(SKIdP, PKSP||IDSP||IDIdP).
4. The IdP stores IDSP and CertSP in its MC, as presented in Table 2.
5. The IdP sends SKSP||ADDIdP via a secure channel to the SP.
6. Upon receiving SKSP||ADDIdP, the SP stores IDSP, ESKSP = SKSP ⊕ h(PWSP),

and ADDIdP, as listed in Table 3.

Details regarding the registration phase are shown in Figure 14.

5. Response(𝑆𝐾𝑈/𝑆𝑃||𝐴𝐷𝐷𝐼𝑑𝑃)

2. Request for registration (𝐼𝐷𝑈/𝑆𝑃)

IdP IdP’s SCsUser/SP

1. Generate: 𝐼𝐷𝑈/𝑆𝑃, 𝑃𝑊𝑈/𝑆𝑃

MC AC

6-1 Compute: 𝐸𝑆𝐾𝑈/𝑆𝑃 = 𝑆𝐾𝑈/𝑆𝑃⊕ℎ(𝑃𝑊𝑈/𝑆𝑃)

6-2. Store: 𝐼𝐷𝑈/𝑆𝑃, 𝐸𝑆𝐾𝑈/𝑆𝑃, 𝐴𝐷𝐷𝐼𝑑𝑃

4. Store (𝐼𝐷𝑈/𝑆𝑃, 𝐶𝑒𝑟𝑡𝑈/𝑆𝑃)

3-1. Generate: 𝑆𝐾𝑈/𝑆𝑃, 𝑃𝐾𝑈/𝑆𝑃
3-2. Compute:

𝐶𝑒𝑟𝑡𝑈/𝑆𝑃
= 𝑃𝐾𝑈/𝑆𝑃||𝐼𝐷𝑈/𝑆𝑃||𝐼𝐷𝐼𝑑𝑃||𝑆𝑖𝑔(𝑆𝐾𝐼𝑑𝑃, 𝑃𝐾𝑈/𝑆𝑃||𝐼𝐷𝑈/𝑆𝑃||𝐼𝐷𝐼𝑑𝑃)

Figure 14. Registration phase of the proposed scheme.

7.3. Mutual Authentication Phase

In this authentication step, a user and an SP perform mutual authentication using
the IdP SCs for the user to access the SP. After this phase, the user and the SP can gener-
ate session keys for secure communication. The mutual authentication phase process is
as follows:

Electronics 2023, 12, 1217 15 of 25

1. The user enters PWU and computes SKU = ESKU ⊕ h(PWU). Subsequently, the user
generates timestamp tsU and a random number, rU , and computes KU = rU · G,
TU = h(KU ||tsU), and VU = EC.sign(SKU , TU). Subsequently, the user generates the
request message MU = TIDU ||ADDIdP||KU ||VU ||tsU .

2. The user requests to log in by sending MU to the SP via a public channel.
3. Upon receiving MU , the SP verifies whether tsU is in a valid range. The SP terminates

the authentication process if tsU is invalid. Otherwise, the SP generates the MC’s
input as TXin = Typeentity||TIDU |||VU ||tsU , where Typeentity represents the “user”.

4. The SP invokes the IdP’s MC using ADDIdP in MU by sending TXin.
5. The MC searches for the IDU that matches TIDU in TXin, and then verifies the revoca-

tion status. If the revocation status of the IDU is true, then the MC returns the fail signal
to the SP; otherwise, the MC searches for a certificate, CertU, that matches IDU.

6. The MC calls its own AC as a delegate call by sending TXin and CertU .
7. Upon receiving TXin and CertU , the AC verifies VU in TXin as EC.Veri f y(PKU , VU).

Subsequently, if Typeentity equals “user”, the AC changes the temporary identity of
the user to TIDU = h(TIDU ||VU) and stores it in the MC’s storage.

8. If VU is invalid, the AC returns a failed signal to the MC. Otherwise, the AC returns a
successful signal to the MC.

9. Upon receiving the results of the AC, the MC returns IDU to the SP.
10. Upon receiving the results of the MC, the SP enters PWSP and computes SKSP = ESKSP⊕

h(PWSP). Next, the SP generates the timestamp tsSP and a random number rSP and com-
putes KSP = rSP ·G, TSP = h(KSP||tsSP), and VSP = EC.sign(SKSP, TSP). Subsequently,
the SP generates a response message, MSP = TIDSP||ADDIdP||KSP||VSP||tsSP, and
generates a session key, SK = rSP · KU.

11. The SP allows login for the user corresponding to the identity IDU by sending MSP to
the user.

12. Upon receiving MSP, the user verifies whether tsSP is within a valid range. If tsSP is
invalid, then the user terminates the authentication process. Subsequently, the user
changes TIDU to TIDU = h(TIDU ||VU) and generates a session key as SK = rU · KSP.
Next, the user generates the MC’s input as TXin = Typeentity||TIDSP||VSP||tsSP, where
Typeentity represents “SP”.

13. The user invokes the IdP’s MC using ADDIdP in MSP by sending TXin.
14. The MC searches for the IDSP that matches TIDSP in TXin and then verifies the revoca-

tion status. If the revocation status of IDSP is true, then the MC returns the fail signal to
the user; otherwise, the MC searches for a certificate, CertSP, that matches IDSP.

15. The MC calls its AC as a delegate call by sending TXin and CertSP.
16. Upon receiving TXin and CertSP, the AC verifies VSP in TXin as EC.Veri f y(PKSP, VSP).
17. If VSP is invalid, the AC returns a failed signal to the MC. Otherwise, the AC returns a

successful signal to the MC.
18. Upon receiving the AC’s result indicating a failed signal, the MC returns it to the user.

Otherwise, the MC returns the user IDSP to the user.

Details regarding the mutual authentication phase are shown in Figure 15.

Electronics 2023, 12, 1217 16 of 25

6. DelegateCall

(𝑇𝑋𝑖𝑛, 𝐶𝑒𝑟𝑡𝑈)

5-1. Search 𝐼𝐷𝑈 that matches 𝑇𝐼𝐷𝑈
5-2. Verify 𝐼𝐷𝑈 ‘s revocation status

5-3. Search 𝐶𝑒𝑟𝑡𝑈 that matches 𝐼𝐷𝑈

1-1. Enter: 𝑃𝑊𝑈

1-2. Generate: 𝑡𝑠𝑈 , 𝑟𝑈
1-3. Compute:

𝐾𝑈 = 𝑟𝑈 · 𝐺
𝑇𝑈 = ℎ(𝐾𝑈||𝑡𝑠𝑈)
𝑉𝑈 = 𝐸𝐶. 𝑠𝑖𝑔𝑛 𝑆𝐾𝑈, 𝑇𝑈
𝑆𝐾𝑈 = 𝐸𝑆𝐾𝑈 ⊕ ℎ(𝑃𝑊𝑈)
1-4. Generate:

𝑀𝑈 = 𝑇𝐼𝐷𝑈||𝐴𝐷𝐷𝐼𝑑𝑃||𝐾𝑈||𝑉𝑈||𝑡𝑠𝑈

SP IdP’s SCsUser/SP

MC AC

2. Request to log in (𝑀𝑈)

3-1. Verify: 𝑡𝑠𝑈
3-2. Generate:

𝑇𝑋𝑖𝑛 = 𝑇𝑦𝑝𝑒𝑒𝑛𝑡𝑖𝑡𝑦||𝑇𝐼𝐷𝑈||𝑉𝑈||𝑡𝑠𝑈
where 𝑇𝑦𝑝𝑒𝑒𝑛𝑡𝑖𝑡𝑦=“user”

4. Request for verification (𝑇𝑋𝑖𝑛)

7-1. Verify:

𝐸𝐶. 𝑉𝑒𝑟𝑖𝑓𝑦(𝑃𝐾𝑈 , 𝑉𝑈)
7-2. Change: 𝑇𝐼𝐷𝑈 = ℎ(𝑇𝐼𝐷𝑈||𝑉𝑈)

17. Respond

(𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒)

9. Respond (𝐼𝐷𝑈)

10-1. Enter: 𝑃𝑊𝑆𝑃

10-2. Generate: 𝑡𝑠𝑆𝑃, 𝑟𝑆𝑃
10-3. Compute:

𝐾𝑆𝑃 = 𝑟𝑆𝑃 · 𝐺
𝑇𝑆𝑃 = ℎ(𝐾𝑆𝑃||𝑡𝑠𝑆𝑃)
𝑉𝑆𝑃 = 𝐸𝐶. 𝑠𝑖𝑔𝑛 𝑆𝐾𝑆𝑃, 𝑇𝑆𝑃
𝑆𝐾𝑆𝑃 = 𝐸𝑆𝐾𝑆𝑃 ⊕ ℎ(𝑃𝑊𝑆𝑃)
10-4. Generate:

𝑀𝑆𝑃 = 𝑇𝐼𝐷𝑆𝑃||𝐴𝐷𝐷𝐼𝑑𝑃||𝐾𝑆𝑃||𝑉𝑆𝑃||𝑡𝑠𝑆𝑃
10-5. Generate: 𝑆𝐾 = 𝑟𝑆𝑃 · 𝐾𝑈

11. Respond (𝑀𝑆𝑃)

12-1. Verify: 𝑡𝑠𝑆𝑃
12-2. Generate:

𝑇𝑋𝑖𝑛 = 𝑇𝑦𝑝𝑒𝑒𝑛𝑡𝑖𝑡𝑦||𝑇𝐼𝐷𝑆𝑃||𝑉𝑆𝑃||𝑡𝑠𝑆𝑃
where 𝑇𝑦𝑝𝑒𝑒𝑛𝑡𝑖𝑡𝑦=“SP”

12-3 Change: 𝑇𝐼𝐷𝑈 = ℎ(𝑇𝐼𝐷𝑈||𝑉𝑈)
12-4. Generate: 𝑆𝐾 = 𝑟𝑈 · 𝐾𝑆𝑃

13. Request for verification (𝑇𝑋𝑖𝑛)

14-1. Search 𝐼𝐷SP that matches 𝑇𝐼𝐷SP
14-2. Verify 𝐼𝐷SP ‘s revocation status

14-3. Search 𝐶𝑒𝑟𝑡SP that matches 𝐼𝐷SP

15. DelegateCall

(𝑇𝑋𝑖𝑛, 𝐶𝑒𝑟𝑡𝑆𝑃)

16. Verify:

𝐸𝐶. 𝑉𝑒𝑟𝑖𝑓𝑦(𝑃𝐾𝐼𝑑𝑃 , 𝑆𝑖𝑔(𝑆𝐾𝐼𝑑𝑃 , 𝑃𝐾𝑆𝑃||𝐼𝐷𝑆𝑃||𝐼𝐷𝐼𝑑𝑃))
𝐸𝐶. 𝑉𝑒𝑟𝑖𝑓𝑦(𝑃𝐾𝑆𝑃, 𝑉𝑆𝑃)

8. Respond

(𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒)

18. Respond (𝐼𝐷SP)

Figure 15. Mutual authentication phase of proposed scheme.

7.4. Revocation Phase

In this registration phase, the user and SP revoke their registration because of the loss
of the ECDSA private key. The user can perform revocation using the SP or IdP, whereas
the SP can be revoked using the IdP. The revocation process is as follows:

1. The user enters PWU and computes SKU = ESKU ⊕ h(PWU). Next, the user gen-
erates timestamp tsU , selects the revocation list textReason, and computes TU =
h(tsU ||textReason) and VU = EC.sign(SKU , TU). Subsequently, the user generates a
request message MU = TIDU ||ADDIdP||VU ||tsU ||textReason.

2. The user requests the user revocation by sending MU to the SP or the IdP via a public
channel.

3. Upon receiving MU , the SP or the IdP verifies whether tsU is within a valid range.
If tsU is invalid, the SP or IdP terminates the revocation process. Otherwise, the SP or
IdP generates the MC input as TXin = TIDU ||VU ||tsU ||textReason.

Electronics 2023, 12, 1217 17 of 25

4. The SP or IdP invokes the IdP’s MC using ADDIdP in MU by sending TXin.
5. The MC searches for an IDU that matches TIDU in TXin; subsequently, the MC

verifies the revocation status. If the revocation status of IDU is true, the MC returns a
fail signal to the requester. Otherwise, the MC searches for a certificate, CertU , that
matches IDU .

6. The MC calls its own AC as a delegate call by sending TXin and CertU .
7. Upon receiving TXin and CertU , the AC verifies VU in TXin as EC.Veri f y(PKU , VU).

Subsequently, the AC changes the revocation status of IDU to true and stores it in the
MC storage.

8. If VU is invalid, the AC returns a failed signal to the MC. Otherwise, the AC returns a
successful signal to the MC.

9. Upon receiving the AC’s result, the MC returns the result to the SP or the IdP.
10. Upon receiving the SP or IdP’s result, the SP or IdP returns the result to the user.

The revocation phase of the SP is identical to that of the users. The SP revocation
process is as follows:

1. The SP enters PWSP and computes SKSP = ESKSP ⊕ h(PWSP). Next, the SP gen-
erates timestamp tsSP, selects the revocation list textReason, and computes TU =
h(tsSP||textReason) and VSP = EC.sign(SKSP, TSP). Subsequently, the user generates
a request message, MSP = TIDSP||ADDIdP||VSP||textReason.

2. The SP requests revocation by sending MSP to the IdP via a public channel.
3. Upon receiving MSP, the IdP verifies whether tsSP is within a valid range. If tsSP is

invalid, the IdP terminates the revocation. Otherwise, the IdP generates the MC input
as TXin = TIDSP||VSP||tsSP||textReason.

4. The IdP invokes the IdP’s MC using ADDIdP in MSP by sending TXin.
5. The MC searches for the IDSP that matches TIDSP in TXin. Subsequently, the MC

verifies the revocation status. If the revocation status of IDSP is true, the MC returns a
fail signal to the requester. Otherwise, the MC searches for a certificate, CertSP, that
matches IDSP.

6. The MC calls its own AC as a delegate call by sending TXin and CertSP.
7. Upon receiving TXin and CertSP, the AC verifies VSP in TXin as EC.Veri f y(PKSP, VSP).

Subsequently, the AC changes the revocation status of IDSP to true and stores it in the
MC storage.

8. If VSP is invalid, the AC returns a failed signal to the MC. Otherwise, the AC returns a
successful signal to the MC.

9. Upon receiving the AC’s result, the MC returns the result to the IdP.
10. Upon receiving the IdP’s result, the IdP returns the result to the SP.

Details regarding the revocation phase are shown in Figure 16.

Electronics 2023, 12, 1217 18 of 25

7-1. Verify:

𝐸𝐶. 𝑉𝑒𝑟𝑖𝑓𝑦(𝑃𝐾𝑈/𝑆𝑃, 𝑉𝑈/𝑆𝑃)

7-2. Change: 𝐼𝐷𝑈/𝑆𝑃 ‘s revocation status=“𝑡𝑟𝑢𝑒”

8. Respond

(𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒)

6. DelegateCall

(𝑇𝑋𝑖𝑛, 𝐶𝑒𝑟𝑡𝑈/𝑆𝑃)

5-1. Search 𝐼𝐷𝑈/𝑆𝑃 that matches 𝑇𝐼𝐷𝑈/𝑆𝑃
5-2. Verify 𝐼𝐷𝑈/𝑆𝑃 ‘s revocation status

5-3. Search 𝐶𝑒𝑟𝑡𝑈/𝑆𝑃 that matches 𝐼𝐷𝑈/𝑆𝑃

1-1. Enter: 𝑃𝑊𝑈/𝑆𝑃

1-2. Generate: 𝑡𝑠𝑈/𝑆𝑃, 𝑡𝑒𝑥𝑡𝑅𝑒𝑎𝑠𝑜𝑛

1-3. Compute:

𝑇𝑈/𝑆𝑃 = ℎ(𝑡𝑠𝑈/𝑆𝑃||𝑡𝑒𝑥𝑡𝑅𝑒𝑎𝑠𝑜𝑛)

𝑉𝑈/𝑆𝑃 = 𝐸𝐶. 𝑠𝑖𝑔𝑛 𝑆𝐾𝑈/𝑆𝑃, 𝑇𝑈/𝑆𝑃
𝑆𝐾𝑈/𝑆𝑃 = 𝐸𝑆𝐾𝑈/𝑆𝑃 ⊕ ℎ(𝑃𝑊𝑈/𝑆𝑃)

1-4. Generate:

𝑀𝑈/𝑆𝑃 = 𝑇𝐼𝐷𝑈/𝑆𝑃||𝐴𝐷𝐷𝐼𝑑𝑃||𝑉𝑈/𝑆𝑃||𝑡𝑠𝑈/𝑆𝑃 ||𝑡𝑒𝑥𝑡𝑅𝑒𝑎𝑠𝑜𝑛

SP/IdP IdP’s SCsUser/SP

MC AC

2. Request for revocation (𝑀𝑈/𝑆𝑃) 3-1. Verify: 𝑡𝑠𝑈/𝑆𝑃
3-2. Generate:

𝑇𝑋𝑖𝑛 = 𝑇𝐼𝐷𝑈/𝑆𝑃||𝑉𝑈/𝑆𝑃||𝑡𝑠𝑈/𝑆𝑃||𝑡𝑒𝑥𝑡𝑅𝑒𝑎𝑠𝑜𝑛

4. Request for verification (𝑇𝑋𝑖𝑛)

9. Respond (𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒)

10. Respond (𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒)

revocation

Figure 16. Revocation phase of the proposed scheme.

7.5. Smart Contract Updating Phase

In the SC updating phase, an IdP can update its AC. The IdP creates and deploys a
new AC and updates ADDAC in its MC.

8. Security Analysis of Proposed Scheme

This section analyzes the security of the proposed scheme using two methods. For
a formal security analysis, the ProVerif [27] protocol verification tool is used to show that
the proposed scheme can satisfy security and authentication features. In addition, an
informal security analysis is presented to demonstrate that the proposed scheme satisfies
the security requirements for federated authentication.

8.1. Formal Security Analysis

Herein, ProVerif [27] was used to analyze the security of the proposed scheme. Re-
cently, Ryu et al. [28], Kang et al. [29], Zhang et al. [30], and Edris et al. [31] have adopted
ProVerif [27], which is an automatic cryptographic protocol verifier, for protocol security
validation. Based on the formal security analysis in this study, the session key was con-
firmed to not be exposed. Three channels were used for security analysis. “Private Channel
1” transmits sensitive data between the user and the SP or the IdP. “Public Channel 1”
transmits general data between the user and SP. Finally, “Public Channel 2” transmits
general data between the user or the SP and SCs. Table 4 lists the channels, variables,
and related parameters. Tables 5–7 list the processes of the user, SP, and SCs, respectively,
during the registration and mutual authentication phases. The SC process was analyzed
for an AC that performs an actual authentication operation. The queries and the main
processes are listed in Table 8. The results of the proposed scheme are presented in Table 9.
The query, not attackers (SK[]), is true in Table 9, thus indicating that the proposed protocol
protects the session key, SK, from attackers.

Electronics 2023, 12, 1217 19 of 25

Table 4. Definitions of channels, variables, and other related parameters.

(*—-channels—-*)
free privateChannel1:channel [private].
free publicChannel1:channel.
free publicChannel2:channel.
(*—-constants—-*)
free IDU:bitstring [private].
free IDSP:bitstring [private].
free ADDAC:bitstring.
(*—-shared key—-*)
free G:bitstring [private].
free SK:bitstring [private].
(*—-functions—-*)
fun concat(bitstring, bitstring):bitstring.
fun h(bitstring):bitstring.
fun mult(bitstring, bitstring):bitstring.
fun sign(bitstring, bitstring):bitstring.
fun verify(bitstring, bitstring):bitstring.
(*—-events—-*)
event startUi(bitstring).
event endUi(bitstring).
event startSP(bitstring).
event endSP(bitstring).
event startAC(bitstring).
event endAC(bitstring).

Table 5. User process.

(*—-Ui process—-*)
let Ui =
out(privateChannel1,(IDU));
in(privateChannel1, (XSKu:bitstring, ADDIdP:bitstring));
let TIDU=IDU in
event startUi(IDU);
new tsU:bitstring;
new rU:bitstring;
let KU = mult(rU, G) in
let TU = h(concat(KU, tsU)) in
let VU = sign(XSKu, TU) in
out(publicChannel1, (TIDU, ADDIdP, KU, VU, tsU));
in(publicChannel1, (TIDSP:bitstring, ADDIdP2:bitstring, KSP:bitstring, VSP:bitstring, tsSP:bitstring));
let TID=h(concat(TIDU, VU)) in
let SK = mult(rU, KSP) in
new Typeentity:bitstring;
out(publicChannel2, (Typeentity, TIDSP, VSP, tsSP));
in(publicChannel2, (xIDSP:bitstring));
event endUi(IDU).

Electronics 2023, 12, 1217 20 of 25

Table 6. SP process.

(*—–SP process—-*)
let SP =
out(privateChannel1,(IDSP));
in(privateChannel1, (XSKsp:bitstring, ADDIdP:bitstring));
let TIDSP=IDSP in
event startSP(IDSP);
in(publicChannel1, (TIDU:bitstring, ADDIdP2:bitstring, KU:bitstring, VU:bitstring, tsU:bitstring));
new Typeentity:bitstring;
out(publicChannel2, (Typeentity, TIDU, VU, tsU));
in(publicChannel2, (xIDU:bitstring));
new tsSP:bitstring;
new rSP:bitstring;
let KSP = mult(rSP, G) in
let TSP = h(concat(KSP, tsSP)) in
let VSP = sign(XSKsp, TSP) in
let SK = mult(rSP, KU) in
out(publicChannel1, (TIDSP, ADDIdP2, KSP, VSP, tsSP));
event endUi(IDSP).

Table 7. AC process.

(*—-AC process—-*)
let AC =
in(privateChannel1,(XIDentity:bitstring));
new SKIdP:bitstring;
new PKIdP:bitstring;
new SKentity:bitstring;
new PKentity:bitstring;
new IDIdP:bitstring;
let Certsign = sign(SKIdP, concat(concat(PKentity,XIDentity),IDIdP)) in
event startAC(ADDAC);
in(publicChannel2, (XPKentity:bitstring, Ventity:bitstring));
new true:bitstring;
if (verify(XPKentity, Ventity)=true) then
out(publicChannel2, true);
event endAC(ADDAC).

Table 8. Queries and main processes.

(*—-queries—-*)
query idu:bitstring; inj-event(endUi(idu)) ==> inj-event(startUi(idu)).
query idsp:bitstring; inj-event(endSP(idsp)) ==> inj-event(startSP(idsp)).
query addac:bitstring; inj-event(endAC(addac)) ==> inj-event(startAC(addac)).
query attacker(SK).
(*—-process—-*)
process
((!Ui)|(!SP)|(!AC))

Table 9. Results.

Verification summary:
Query inj-event(endUi(idu)) ==> inj-event(startUi(idu)) is true.
Query inj-event(endSP(idsp)) ==> inj-event(startSP(idsp)) is true.
Query inj-event(endAC(addac)) ==> inj-event(startAC(addac)) is true.
Query not attacker(SK[]) is true.

Electronics 2023, 12, 1217 21 of 25

8.2. Informal Security Analysis

1. ID Guessing Attack: In the proposed scheme, IDU/SP is not directly used. As this
study employed TIDU/SP, which changes every authentication, rather than IDU/SP,
an attacker cannot obtain IDU/SP through a public channel. Therefore, the proposed
scheme can protect against ID guessing attacks.

2. Replay Attack: Even if the attacker steals MU in the mutual authentication phase
and presents it to the SP, the SP can determine whether the message MU is reused
because the SP verifies that the timestamp tsU is within a valid range. Moreover,
because VU is a digital signature that can only be created using the user’s private
key, tsU cannot be changed and a signature for the changed ts

′
U cannot be generated.

Therefore, the proposed scheme can provide protection against replay attacks.
3. User Impersonation Attack: Even if the attacker steals MU and replaces the user’s

identity, TIDU , with the attacker’s identity, TIDA, the SP can identify an invalid user.
If the attacker is not registered in the IdP registered by the user, then the MC returns a
fail signal to the SP because it can not identify IDA that matches TIDU . In addition,
if the attacker is registered in the IdP registered by the user, the MC returns a fail signal
to the SP because the AC verifies VU with CertA and fails the verification. Therefore,
the proposed scheme can provide protection against user impersonation attacks.

4. Server Impersonation Attack: For the same reason as user impersonation attacks,
the user can determine an invalid SP. Even if the attacker steals MSP and replaces the
SP’s identity, TIDSP, with the attacker’s identity, TIDSP, the user can determine an
invalid SP. If the attacker is unregistered in the IdP registered with the SP, the MC
returns a fail signal to the user because the MC cannot find the IDSP that matches
TIDSP. In addition, if the attacker is registered in the IdP registered with the SP,
the MC returns a fail signal to the user because the AC verifies VSP with CertA and
fails the verification. Therefore, the proposed scheme can protect against server
impersonation attacks.

5. Privileged Insider Attack: In the proposed scheme, the SP and IdP are separated
and the SP does not possess information related to user authentication; therefore,
an attack by an insider of the SP is impossible. In addition, without the random
number, rU , possessed only by the user, the session key cannot be obtained with only
IDU , TIDU , and CertU stored in the IdP’s SC. Therefore, the proposed scheme can
provide protection against privileged insider attacks.

6. Session Key Disclosure: Computing the session keys SK = rU · rSP · G, rU and rSP
is required. However, because rU and rSP contain only the user and SP information,
only the user’s session keys and the SP can be generated. Therefore, the proposed
scheme can protect against session key disclosure attacks.

7. Forward Secrecy and Backward Secrecy: Even if the attacker obtains the session key,
they will be unable to access the previous or subsequent keys, as each one is generated
randomly with no correlation to the others. Therefore, the proposed scheme can
preserve forward and backward secrecy.

8. Mutual Authentication: The user and the SP authenticate each other by verifying MU
and MSP because MU and MSP can utilize their private keys. Therefore, the proposed
scheme provides mutual authentication.

9. User Anonymity: In the proposed scheme, TIDU/SP, which changes at every authen-
tication step, was used. Therefore, the proposed scheme ensures user anonymity.

10. Single Point-of-Failure: Even if the IdP system fails, user authentication can be per-
formed normally because the proposed scheme uses SCs for authentication. Therefore,
the proposed scheme can protect against single-point failures.

The results of the security analysis, with comparisons to related studies, are presented
in Table 10.

Electronics 2023, 12, 1217 22 of 25

Table 10. Comparison of security features.

Security Features Cheng et al. [8] Xiang et al. [7] Xue et al. [13] Ours

1. ID Guessing Attack O O X O
2. Replay Attack O O O O
3. User Impersonation Attack O O X O
4. Server Impersonation Attack O O X O
5. Privileged Insider Attack O O X O
6. Session Key Disclosure O O O O
7. Forward Secrecy and Backward Secrecy O O O O
8. Mutual Authentication O O O O
9. User Anonymity O O X O
10. Single Point-of-Failure X X O O

9. Performance Analysis

This section analyzes the performance of our system in terms of the computational
cost of cryptographic calculations using the same method as that used in numerous
authentication-related studies [32–37]. The development environment used to analyze the
performance is presented in Table 11. The five symbols listed in Table 12 were used for
the performance analysis of the proposed scheme. A comparison of the computational
overhead in the authentication phase was performed between the proposed and other
related schemes [7,8,13] (see Table 13).

Table 11. Development environment.

Item Value

CPU Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz 1.99 GHz
RAM 16.0 GB
OS Windows 10 Home
Software JDK 17
Security level secp521r1 ECC

Table 12. Computational cost of cryptographic calculations (ms).

Symbol Meaning Time (ms)

Th The computational cost of a one-way hash function operation. 0.007
Tm The computational cost of scalar multiplication in the field. 34.32
Te The computational cost of symmetric encryption or decryption. 0.23
Ts The computational cost of the ECDSA sign. 22.93
Tv The computational cost of the ECDSA verification. 44.03

Table 13. Comparison of computational costs.

Schemes Cheng et al. [8] Xiang et al. [7] Xue et al. [13] Ours

User 4Tm + 4Th + 2Te 8Tm + 4Th 2Tm + Th + Ts 2Tm + 3Th + Ts
= 138.02 = 274.84 = 91.64 = 91.78

Server 4Tm + 2Th + Te 9Tm + 4Th 2Tm + Th + Ts 2Tm + 2Th + Ts
= 137.65 = 309.16 = 91.64 = 91.71

Smart Contracts - - Th + 2Tv 2Th + Tv
- - = 88.13 = 44.17

Total 8Tm + 6Th + 3Te 18Tm + 8Th 4Tm + 3Th + 2Ts + 2Tv 4Tm + 7Th + 2Ts + Tv
= 275.67 = 618.32 = 271.41 = 227.66

10. Discussion and Limitations

This study provides a distributed and federated authentication scheme that can resist
various security threats, including a single point-of-failure. That is, even if the IdP server

Electronics 2023, 12, 1217 23 of 25

fails, the authentication service using the corresponding IdP is not affected. Moreover, this
scheme using updatable SCs can support the fixing of programming bugs, adding the func-
tion of a smart contract, or changing business logic. For example, the previously registered
user and SP data can be easily maintained, even if the cryptographic algorithms must be
changed for security. In Section 9, the computational overhead during the authentication
phase of the three schemes was compared [7,8,13].

(t1 − t2)/t2 (1)

In Equation (1), t1 represents the average computational cost of the two schemes [7,8]
and t1 represents the cost of the proposed method. The results of the computational
calculations indicate that the proposed method outperformed the other methods by 71%.
Therefore, the proposed scheme is expected to provide federated authentication services
efficiently using SCs. However, the proposed scheme assumes that the private key is stored
on a tamper-proof smart card. Therefore, the user may have the inconvenience of having
to carry a smart card. In future studies, we will focus on improving usability, and we
plan to conduct additional research and apply private key protection technology, such as
behavior-based biometric authentication, without the need for a smart card.

11. Conclusions

In this study, a distributed and federated authentication scheme was proposed based
on updatable SCs. Federated authentication, such as Google ID, enables users to conve-
niently access multiple websites using a single login credential. In the event of an IdP
server failure, the entire service may become inaccessible owing to the IdP server’s general
management of all login credentials. Thus, in this study, we focused on using SCs to
overcome a single point-of-failure in federated authentication. A security analysis was
performed and confirmed that the proposed scheme provides protection against not only
single point failure, but also common attacks, including ID guessing attacks, replay at-
tacks, user impersonation attacks, server impersonation attacks, privileged insider attacks,
session key disclosure, and forward and backward security. Furthermore, the proposed
scheme can maintain previously registered user and SP data even if the SC is updated
for bug fixes or to update the authentication function of an SC. In addition, the proposed
scheme outperformed other methods by 71%. Thus, it is expected to be widely used as
one login credential in various fields such as internet banking and e-commerce without
concerns regarding single points-of-failure. However, the user may have the inconvenience
of carrying a smart card, because our scheme assumes that the private key is stored in
a tamper-proof smart card. Therefore, further studies are required on technologies that
protect private keys, such as behavior-based biometric authentication, to improve usability.

Author Contributions: Conceptualization, K.K.; methodology, K.K. and J.R.; software, K.K.; valida-
tion, J.R. and H.L.; formal analysis, K.K.; investigation, D.W.; writing—original draft preparation,
K.K. and J.R.; writing—review and editing, H.L. and Y.L.; visualization, K.K. and H.L.; supervision,
Y.L. and D.W.; project administration, Y.L. and D.W.; funding acquisition, D.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by an Institute of Information & Communications Tech-
nology Planning Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00558,
Development of National Statistical Analysis System using Homomorphic Encryption Technology).

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 1217 24 of 25

References
1. Carretero, J.; Izquierdo-Moreno, G.; Vasile-Cabezas, M.; Garcia-Blas, J. Federated identity architecture of the European eID system.

IEEE Access. 2018, 6, 75302–75326. [CrossRef]
2. Chen, Y.; Dong, G.; Hao, Y.; Zhang, Z.; Peng, H.; Yu, S. An Open Identity Authentication Scheme Based on Blockchain. In

Algorithms and Architectures for Parallel Processing, Proceedings of the 19th International Conference, ICA3PP 2019, Melbourne, VIC,
Australia, 9–11 December 2019; Springer International Publishing: Cham, Switzerland, 2020; pp. 421–438.

3. Dey, A.; Weis, S. PseudoID: Enhancing privacy in federated login. In Hot Topics in Privacy Enhancing Technologies; 2010; pp. 95–107.
Available online: https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36553.pdf (accessed on 9 February
2023).

4. Chadwick, D. Federated identity management. Found. Secur. Anal. Des. V 2009, 96–120. [CrossRef]
5. Isaakidis, M.; Halpin, H.; Danezis, G. UnlimitID: Privacy-preserving federated identity management using algebraic MACs. In

Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, Vienna, Austria, 24–28 October 2016; pp. 139–142.
6. Jensen, J. Federated identity management challenges. In Proceedings of the Seventh International Conference on Availability,

Reliability and Security, Prague, Czech Republic, 20–24 August 2012; pp. 230–235.
7. Xiang, X.; Cao, J.; Fan, W. Decentralized authentication and access control protocol for blockchain-based e-health systems. J. Netw.

Comput. Appl. 2022, 207, 103512. [CrossRef]
8. Cheng, X.; Chen, F.; Xie, D.; Sun, H.; Huang, C. Design of a secure medical data sharing scheme based on blockchain. J. Med. Syst.

2020, 44, 52. [CrossRef]
9. Zhang, R.; Xue, R.; Liu, L. Security and privacy for healthcare blockchains. IEEE Trans. Serv. Comput. 2021, 15, 3668–3686.

[CrossRef]
10. Feng, X.; Cui, K.; Jiang, H.; Li, Z. EBAS: An Efficient Blockchain-Based Authentication Scheme for Secure Communication in

Vehicular Ad Hoc Network. Symmetry 2022, 14, 1230. [CrossRef]
11. Tomar, A.; Tripathi, S. BCAV: Blockchain-based certificateless authentication system for vehicular network. Peer-Peer Netw. Appl.

2022, 15, 1733–1756. [CrossRef]
12. Gong, C.; Xiong, L.; He, X.; Niu, X. Blockchain-based conditional privacy-preserving authentication scheme for vehicular ad hoc

networks. J. Ambient. Intell. Humaniz. Comput. 2022, 1–14. [CrossRef]
13. Xue, K.; Luo, X.; Ma, Y.; Li, J.; Liu, J.; Wei, D.S.L. A Distributed Authentication Scheme Based on Smart Contract for Roaming

Service in Mobile Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 71, 5284–5297. [CrossRef]
14. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and

platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]
15. Zheng, G.; Gao, L.; Huang, L.; Guan, J.; Zheng, G.; Gao, L.; Huang, L.; Guan, J. Upgradable contract. Ethereum Smart Contract Dev.

Solidity 2021, 197–213. [CrossRef]
16. Wöhrer, M.; Zdun, U. Design patterns for smart contracts in the ethereum ecosystem. In Proceedings of the 2018 IEEE International

Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018;
pp. 1513–1520.

17. Shao, W.; Wang, Z.; Wang, X.; Qiu, K.; Jia, C.; Jiang, C. LSC: Online auto-update smart contracts for fortifying blockchain-based
log systems. Inf. Sci. 2020, 512, 506–517. [CrossRef]

18. Górski, T. Reconfigurable Smart Contracts for Renewable Energy Exchange with Re-Use of Verification Rules. Appl. Sci. 2022,
12, 5339. [CrossRef]

19. Zhang, Z.; Krol, M.; Sonnino, A.; Zhang, L.; Riviére, E. EL PASSO: Efficient and lightweight privacy-preserving single sign on.
Proc. Priv. Enhancing Technol. 2021, 2021, 70–87. [CrossRef]

20. Szabo, N. Smart contracts: Building blocks for digital markets. EXTROPY J. Transhumanist Thought 1996, 18, 28.
21. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2017, 151, 1–32.
22. American National Standards Institute. X9. 62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital

Signature Algorithm (ECDSA); American National Standards Institute, X9-Financial Services: Annapolis, MD, USA, 2005.
23. Qu, M. Section 2: Recommended Elliptic Curve Domain Parameters; Tech. Rep. SEC2-Ver-0.6; Certicom Res.: Mississauga, ON,

Canada, 1999.
24. Andi, A.; Juliandy, C.; Robet, R.; Pribadi, O. Securing Medical Records of COVID-19 Patients Using Elliptic Curve Digital

Signature Algorithm (ECDSA) in Blockchain. CommIT (Commun. Inf. Technol.) J. 2022, 16, 87–96. [CrossRef]
25. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. Efficient and secure ECDSA algorithm and its applications: A survey. Int. J. Com-Munication

Netw. Inf. Secur. (IJCNIS) 2019, 11, 7–35. [CrossRef]
26. Ethereum.org. Upgrading Smart Contracts. Available online: https://ethereum.org/en/developers/docs/smart-contracts/

upgrading/ (accessed on 9 February 2023).
27. Blanchet, B.; Smyth, B.; Cheval, V.; Sylvestre, M. ProVerif 2.04: Automatic Cryptographic Protocol Verifier, User Manual and

Tutorial. Available online: https://proverif.inria.fr/manual.pdf (accessed on 9 February 2023).
28. Ryu, J.; Lee, H.; Lee, Y.; Won, D. SMASG: Secure Mobile Authentication Scheme for Global Mobility Network. IEEE Access 2022,

10, 26907–26919. [CrossRef]

http://doi.org/10.1109/ACCESS.2018.2882870
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36553.pdf
http://dx.doi.org/10.1007/978-3-642-03829-7_3
http://dx.doi.org/10.1016/j.jnca.2022.103512
http://dx.doi.org/10.1007/s10916-019-1468-1
http://dx.doi.org/10.1109/TSC.2021.3085913
http://dx.doi.org/10.3390/sym14061230
http://dx.doi.org/10.1007/s12083-022-01319-2
http://dx.doi.org/10.1007/s12652-021-03655-2
http://dx.doi.org/10.1109/TVT.2022.3148303
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1007/978-981-15-6218-1_7
http://dx.doi.org/10.1016/j.ins.2019.09.073
http://dx.doi.org/10.3390/app12115339
http://dx.doi.org/10.2478/popets-2021-0018
http://dx.doi.org/10.21512/commit.v16i1.7958
http://dx.doi.org/10.17762/ijcnis.v11i1.3827
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://proverif.inria.fr/manual.pdf
http://dx.doi.org/10.1109/ACCESS.2022.3157871

Electronics 2023, 12, 1217 25 of 25

29. Kang, D.; Lee, H.; Lee, Y.; Won, D. Lightweight user authentication scheme for roaming service in GLOMONET with privacy
preserving. PLoS ONE 2021, 16, e0247441. [CrossRef]

30. Zhang, J.; Yang, L.; Cao, W.; Wang, Q. Formal analysis of 5G EAP-TLS authentication protocol using proverif. IEEE Access 2020, 8,
23674–23688. [CrossRef]

31. Edris, E.K.K.; Aiash, M.; Loo, J. Formal verification of authentication and service authorization protocols in 5G-enabled device-to-
device communications using ProVerif. Electronics 2021, 10, 1608. [CrossRef]

32. Wu, Z.Y.; Lee, Y.C.; Lai, F.; Lee, H.C.; Chung, Y. A secure authentication scheme for telecare medicine information systems. J. Med.
Syst. 2012, 36, 1529–1535. [CrossRef]

33. Wu, F.; Xu, L.; Kumari, S.; Li, X. An improved and provably secure three-factor user authentication scheme for wireless sensor
networks. Peer-Peer Netw. Appl. 2018, 11, 1–20. [CrossRef]

34. Ryu, J.; Lee, H.; Kim, H.; Won, D. Secure and efficient three-factor protocol for wireless sensor networks. Sensors 2018, 18, 4481.
[CrossRef]

35. Ryu, J.; Kang, D.; Lee, H.; Kim, H.; Won, D. A secure and lightweight three-factor-based authentication scheme for smart
healthcare systems. Sensors 2020, 20, 7136. [CrossRef] [PubMed]

36. Kim, K.; Ryu, J.; Lee, Y.; Won, D. An Improved Lightweight User Authentication Scheme for the Internet of Medical Things.
Sensors 2023, 23, 1122. [CrossRef] [PubMed]

37. Xu, L.; Wu, F. Cryptanalysis and improvement of a user authentication scheme preserving uniqueness and anonymity for
connected health care. J. Med. Syst. 2015, 39, 1–9. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1371/journal.pone.0247441
http://dx.doi.org/10.1109/ACCESS.2020.2969474
http://dx.doi.org/10.3390/electronics10131608
http://dx.doi.org/10.1007/s10916-010-9614-9
http://dx.doi.org/10.1007/s12083-016-0485-9
http://dx.doi.org/10.3390/s18124481
http://dx.doi.org/10.3390/s20247136
http://www.ncbi.nlm.nih.gov/pubmed/33322813
http://dx.doi.org/10.3390/s23031122
http://www.ncbi.nlm.nih.gov/pubmed/36772160
http://dx.doi.org/10.1007/s10916-014-0179-x
http://www.ncbi.nlm.nih.gov/pubmed/25631840

	Introduction
	Our Contribution
	Paper Structure

	Related Studies
	Preliminaries
	Updatable Smart Contracts
	Elliptic Curve Digital Signature Algorithm (ECDSA)

	Review of Xue et al.'s Scheme
	Registration Phase
	User Authentication Phase
	Dynamic User Enrollment and Revocation
	Establishment of Roaming Partnership

	Analysis of Xue et al.'s Scheme
	User Impersonation Attacks
	Anonymity
	Disadvantages of Smart Contracts

	System Model and Security Requirements
	System Model
	Security Requirements
	Assumption

	Proposed Scheme
	Initialization
	Registration Phase
	Mutual Authentication Phase
	Revocation Phase
	Smart Contract Updating Phase

	Security Analysis of Proposed Scheme
	Formal Security Analysis
	Informal Security Analysis

	Performance Analysis
	Discussion and Limitations
	Conclusions
	References

